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Interpolation by translates of suitable radial basis functions is an important
approach towards solving the scattered data problem. However, for a large class of
smooth basis functions (including multiquadrics f(x)=(|x|2+l2)m−d/2, m > d/2,
2m−d ¨ 2Z), the existing theories guarantee the interpolant to approximate well
only for a very small class of very smooth approximands. The approximands f
need to be extremely smooth. Hence, the purpose of this paper is to study the
behavior of interpolation by smooth radial basis functions on larger spaces,
especially on the homogeneous Sobolev spaces. © 2001 Academic Press
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1. INTRODUCTION

We consider approximation of real-valued (underlying) functions f
which are known only at a discrete set X :={x1, ..., xN} in Rd, d \ 1.
Given data (xj, f(xj)), j=1, ..., N, the radial basis function approach is to
choose a function f: RdQ R and to define an approximant af, X by

af, X(x) :=p(x)+C
N

j=1
ajf(x−xj), (1.1)

where p ¥Pm and aj are chosen so that

C
N

j=1
ajq(xj)=0 for all q ¥Pm. (1.2)

Here Pm denotes the class of all algebraic polynomials of degree less than
m on Rd. In particular, af, X becomes the so-called f interpolant when af, X
satisfies the conditions

af, X(xj)=f(xj), j=1, ..., N. (1.3)



For a wide choice of functions f and polynomial orders m, including the
case m=0, the general conditions on f that ensure the nonsingularity of
the system (1.2) and (1.3) have been given by Micchelli [M]. The function
f is radial in the sense that f(x)=F(|x|), and we assume f=F(| · |) to be
strictly conditionally positive definite of order m, which implies that the
matrix A :=(f(xi−xj))i, j=1, ..., N is positive definite on the subset of vector
u ¥ RN satisfying ;N

j=1 ujp(xj)=0 with p ¥Pm. For m > 0, we require X to
have the nondegeneracy property for Pm

(p|X=0, p ¥Pm) implies p — 0. (1.4)

For more details, the readers are referred to the papers [MN1, MN2, WS],
and the survey papers [D, Bu, and P].

Radial basis function interpolation of scattered data is a frequently used
method for multivariate data fitting. The existing studies estimate errors of
interpolation for the functions in the space

Ff :=3g: |g|2f := F
R
d

|ĝ(h)|2

f̂(c)
dh <.4 (1.5)

which is called ‘‘native’’ function space for f, (see [MN2, WS]). However,
for smooth basis functions f (e.g., multiquadrics), these spaces Ff are very
small. The approximands need to be extremely smooth. Thus, the purpose
of this paper is to explore the approximation behavior of interpolants when
the approximands f belong to a larger space, especially to the homo-
geneous Sobolev space. For k > 0, the homogeneous Sobolev space is
defined by

Wk
p(R

d) :=3f: |f|k, p :=1 C
|a|1=k

||Daf||pLp(Rd) 2
1/p

<.4

with 1 [ p [.. In order to discuss the extent to which af, X approximates
f, let us assume that W … Rd is an open bounded domain with cone prop-
erty over which the error between af, X and f is measured. For a given set
X in W̄, we define the ‘‘density’’ of X in W̄ to be the number

h :=h(X; W) :=sup
x ¥ W

min
xj ¥X

|x−xj |. (1.6)

In fact, in this study, we need stability results on the interpolation process.
Therefore, we define the separation distance within X by

q := min
1 [ i ] j [N

|xi−xj |/2. (1.7)
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Here and in the sequel, without great loss, we assume that there exists a
constant r > 0 such that

h/q [ r.

This condition asserts that the number of the scattered points in the set X
is bounded by ch −d, i.e., N [ ch −d, with a constant c > 0.

The function f has a generalized Fourier transform in the sense of
tempered distribution, and we assume that its Fourier transform f̂ coincide
on Rd00 with some continuous function while having a certain type of
singularity (necessarily of finite order) at the origin. Hence, f̂ is of the form

| · |2m f̂=F> 0, m > d/2 and F ¥ L.(Rd). (1.8)

In particular, for a given set X, we adopt the scaled basis functions
fh :=f( ·/h) (instead of f) for interpolation, and we use the notation

sf, X(x) :=p(x)+C
N

j=1
ajfh(x−xj), p ¥Pm, (1.9)

to differentiate from the notation af, X in (1.1). As a matter of fact, we will
see in Section 3 that for certain classes of basis functions f, the interpolant
sf, X is identically equal to af, X, under some suitable conditions of f.

Our goal is to prove an approximation power of interpolation sf, X on
the homogeneous Sobolev space: Let f be a smooth radial basis function
that satisfies the condition (1.8). Then, for every function f ¥Wm

2 (R
d) 5

Wm
.(R

d), we have the error bound

||f−sf, X ||L.(W) [ ch
m−d/2

with a constant c > 0. Note that 2m is the order of singularity of f̂ at the
origin, see (1.8). Furthermore, in Section 3, we apply this estimate to specific
radial basis functions. In fact, employing the dilated basis function f( ·/h)
means our analysis is stationary. In this case, the approximation order
depends on the order of singularity of f̂ at the origin. The stationary case
was analyzed in great detail in the literature. Among them, the readers are
referred to the paper [BR].

The following notations are used throughout this paper. The Fourier
transform of f ¥ L1(Rd) is defined as

f̂(h) := F
R
d
f(t) e −ih · t dt.

Also, we use the notation f K for the inverse Fourier transform of a func-
tion f ¥ L1(Rd). The Fourier transform can be uniquely extended to the
space of tempered distributions on Rd. Several different norms are used. In
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the case that g is a matrix or a vector, ||g||p, 1 [ p [., indicates its p-norm
with 1 [ p [.. For x ¥ Rd, |x| stands for its Euclidean norm and, for
a ¥ Zd+ :={b ¥ Zd : b \ 0}, we set

a ! :=a1! · · ·ad! and |a|1 := C
d

k=1
ak.

2. INTERPOLATION OF FUNCTIONS IN SOBOLEV SPACE

In this section, we estimate an error bound of f−sf, X with the basis
functions f that satisfy the condition in (1.8). If a function f is from the
space Wm

2 (R
d), our first step is to find a band-limited part

fH :=fH, h :=s(h · ) K f f ¥Ffh
, (2.1)

where s: RdQ [0, 1] is a nonnegative C.-cutoff function whose support s
lies in the Euclidean ball B1 with s=1 on B1/2 and ||s||L.(Rd)=1. Then, in
error analysis, it is useful to divide f−sf, X into two parts,

f−sf, X=(fH−sfH, X)+(fT−sfT, X), (2.2)

where

fT :=fT, h :=f−s(h · ) K f f.

From the papers (see, e.g., [WS, MN2]), we cite

Lemma 2.1. Let af, X in (1.1) be an interpolant to f on X={x1, ..., xN}.
Given f and m, for all functions f in the native space Ff, there is an error
bound of the form

|f(x)−af, X(x)| [ |f|f Pf, X(x),

where Pf, X(x) is the norm of the error functional, i.e.,

Pf, X(x)= sup
|f|f ] 0

|f(x)−af, X(x)|
|f|f

. (2.3)

In the following lemma, we estimate the error fH−sfH, X.

Lemma 2.2. Let sf, X be as in (1.9). Then, for every function f ¥Wm
2

(Rd), we have

|fH(x)−sfH, X(x)| [ ch
m−d/2Pf, X/h(x/h) |f|m, 2

with a constant c > 0 depending on s and f̂.
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Proof. Note that the function sfH, X(h · ) can be considered as an inter-
polant (employing the shifts of f) to the scaled function fH(h · ) on X/h, i.e.,

sfH, X(h · )=afH(h · ), X/h

with af, X in (1.1). Then, since fH(h · ) belongs to the native space Ff,
Lemma 2.1 can be used directly to derive the bound

|fH(h · )−afH(h · ), X/h | (x/h) [ Pf, X/h(x/h) |fH(h · )|f.

From (2.1), we see that fH(h · )5 =h −dsf̂( · /h). Invoking the condition
| · |2mf̂=F> 0 with F ¥ L.(Rd), it follows from the explicit formula of the
norm | · |f in (1.5) that for every function f ¥Wm

2 (R
d),

|fH(h · )|
2
f= F

R
d

|fH(h · )5 (h)|2

f̂(h)
dh

=h −2d F
R
d
|
|h|2m

F(h)
s2(h) f̂2(h/h): dh

[ ch2m−d ||s2/F||L.(Rd) |f|
2
m, 2.

This satisfies the required result because s is supported on the ball B1. L

We now want to find an error bound for fT−sfT, X. To do this, we
introduce some useful lemmas.

Lemma 2.3. For every f ¥Wk
.(R

d) with k > 0, there exists a function f̃
defined by

f̃ :=h −kfT=h −k(f−s(h · ) K f f)

such that

||f̃||L.(Rd) [ c |f|k,.

with a constant c > 0 depending on k.

Proof. Using the identity >Rd s(h · )K (h) dh=s(h · )(0)=1 for any
h > 0, we get

(f−s(h · ) K f f)(t)=F
R
d
s(h · )K (h)(f(t)−f(t−h)) dh.

By taking Taylor expansion of f(t−h) about t, it is obvious that

f(t)−f(t−h)=− C
0 < |n|1 < k

(−h)n Dnf(t)/n !−Rkf(t, h) (2.4)
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with the remainder in the integral form

Rkf(t, h)= C
|n|1=k

(−h)n F
1

0
k(1−y)k−1 Dnf(t−yh) dy/n !.

Note that since >Rd hns(h · ) K (h) dh=(ih) |n|1 Dns(0)=0 for n ] 0, the
integral of the first term in (2.4) multiplied by s(h · )K (h) is identically zero.
Thus, defining

f̃(t) :=−h −k F
R
d
s(h · )K (h) Rkf(t, h) dh,

we derive the bound

||f̃||L.(Rd) [ h
−k F

R
d
||Rkf( · , h)||L.(Rd) |s(h · )

K (h)| dh

[ ch −k |f|k,. C
|n|1=k

F
R
d
|hns(h · )K (h)| dh

[ cŒ |f|k,. C
|n|1=k

||(Dns) K ||L1(Rd).

Hence this lemma is proved. L

Remark. As a matter of fact, for a given f ¥Wk
.(R

d), one may derive
the inequality |f̃|j,. [ ch −j |f|k,. for j=1, ..., k with f̃=h −k(f−
s(h · ) K f f). However, the estimate in the above lemma is enough for
the following analysis.

To find an estimate of fT−sfT, X, we will use the following arguments:
Let gf, X be the interpolant to f on X using the (scaled) Gaussian function

jq(x) :=j(x/q) :=e −|x|
2/q2 (2.5)

with q the separation distance within X as defined in (1.7). In this case
m=0 (see (1.2)), and ff, X is of the form

gf, X(x)=C
N

j=1
bjjq(x−xj). (2.6)

It is well known from the literature that the matrix

Ag :=(fq(xi−xj))i, j=1, ..., N
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is nonsingular (e.g., see [P]). Then the coefficients bf :=(b1, ..., bN)T can
be written as

bf=Ag
−1f,

where f :=(f(x1), ..., f(xN))T.

Proposition 2.4. Let X be a q-separated set and the matrix Ag be
defined as above. Then, we have the following properties:

(a) ||Ag
−1||2 [ c1 for some c1 > 0,

(b) ||Ag
−1||1=||Ag

−1||. [ c2 ||Ag
−1||2 for some c2 > 0.

Proof. The work of Schaback (see Theorem 3.1 in [S1]) shows that
there exist positive constants c and M> 0 such that

||Ag
−1||2 [ cqdĵ

−1
q (M/q).

We know that the Fourier transform of the Gaussian j is of the form
ĵ=pd/2e −| · |

2/4, and hence, ĵ −1q =q −dĵ −1(q · )=q −dp −d/2e |q · |
2/4. This leads

to the bound qdĵ −1q (M/q) [ p
−d/2eM

2/4, which establishes the proof of (a).
Also, the inequality in (b) is proved by a direct application of
Theorem 3.11 in the paper [BSW]. The identity ||Ag

−1||1=||Ag
−1||. is an

obvious consequence of symmetry. L

Lemma 2.5. Let jq be the scaled Gaussian function in (2.5) and let gf, X
be the interpolant to f on X defined as in (2.6). Then, if f ¥ L.(Rd), there
exist positive constants c1 and c2 such that

||bf ||. [ c1 ||A
−1
g ||2 ||f||L.(Rd) [ c2 ||f||L.(Rd).

Proof. Letting Ag
−1=: (aij)1 [ i, j [N, we can write

bf=Ag
−1f=1 C

N

j=1
a1jfj, ..., C

N

j=1
aNjfj 2

T

.

It follows that

||bf ||. [ max
1 [ i [N

C
N

j=1
|aijfj |

[ ||f||L.(Rd) max
1 [ i [N

C
N

j=1
|aij |

=||Ag
−1||1 ||f||L.(Rd) [ c ||Ag

−1||2 ||f||L.(Rd)
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for some c > 0. Since, by Proposition 2.4, the matrix norm ||Ag
−1||2 is

bounded, we get the lemma’s claim. L

We are now ready to estimate the error fT−sfT, X.

Lemma 2.6. Let sf, X be as in (1.9). Let j be the Gaussian function in
(2.5), and assume that f̂ decays slower than ĵ around . such that ĵq/f̂h is
uniformly bounded. Then, for every f ¥Wm

.(R
d), we have

|fT(x)−sfT, X(x)| [ ch
m−d/2(1+Pf, X/h(x/h)) |f|m,..

Proof. For a given function f ¥Wm
.(R

d), by Lemma 2.3, there exist a
bounded function f̃=h −mfT. Then, using the Gaussian interpolant gf̃, X,
we have the identity

h −m(fT−sfT, X)=f̃−gf̃, X+(gf̃, X−sf̃, X)

with gf̃, X in (2.6). Then it is useful to estimate separately those three terms
on the right-hand side of the above equation. In fact, since ||f̃||L.(Rd) [
c |f|m,. by Lemma 2.3, we only need to find bounds of the terms gf̃, X and
gf̃, X−sf̃, X.

First, in order to evaluate gf̃, X, we apply Lemma 2.3 and Lemma 2.5 to
obtain

|gf̃, X(x)| [ ||b f̃ ||. C
N

j=1
jq(x−xj) [ c |f|m,. C

N

j=1
jq(x−xj).

Here, since X is a q-separated set and the function jq decays exponentially,
we can easily check that ;N

j=1 jq(x−xj) is uniformly bounded on W. Next,
to estimate the term gf̃, X−sf̃, X, we make use of the interpolation property
f̃(xj)=gf̃, X(xj) for any j=1, ..., N to get the identity

sf̃, X=sgf̃, X, X.

Then, applying the same technique as in the proof of Lemma 2.2 gives the
bound

|gf̃, X(x)−sgf̃, X, X(x)| [ Pf, X/h(x/h) |gf̃, X(h · )|f.

Recalling the explicit form of | · |f in (1.5), we deduce by change of variables
that

|gf̃, X(h · )|
2
f=|gf̃, X |

2
fh
[ c F

R
d
| C
N

j=1
bje ixj ·h :

2

ĵq(h) dh
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for some c > 0, where the inequality is implied by the condition that ĵq/f̂h
is uniformly bounded. Now, we claim that

ĵ2
q/`2

=qd(p/4)d/2=ĵq.

In fact, remembering the Fourier transform ĵ(h)=pd/2e −|h|
2/4 with j in

(2.5), this is proved by the following direct calculations

ĵ2
q/`2

(h)=(q/`2)2d ĵ2(qh`2)=(p/2)d e −q
2 |h|2/4q2d=qd(p/4)d/2 ĵq(h).

Hence, we use this claim to derive the relation

|gf̃, X(H· )|
2
f [ cq

−d(p/4) −d/2 F
R
d
: C
N

j=1
bje ixj ·hĵq/`2 (h):

2

dh

=cq −d(p/4) −d/2 F
R
d
: C
N

j=1
bjjq/`2 (x−xj):

2

dh.

Denote

K :=> C
N

j=1
jq/`2 ( · −xj)>

L.(R
d)
.

The boundness K <. is clear due to the decaying property of the Gaussian
function jq/`2 and the fact that X is a q-separated set. Thus, it leads to the
inequalities

|gf̃, X(h · )|
2
f [ cKq

−d F
R
d
: C
N

j=1
bjjq/`2 (x−xj): dx

[ cKN ||b f̃ ||. q −d ||jq/`2 ||L1(Rd)

[ cŒh −d ||b f̃ ||. ,

where the last inequality is true by the condition N [ ch −d. Therefore, as a
consequence of Lemma 2.3 and Lemma 2.5, we establish

|f̃(x)−gf̃, X(x)| [ ch −d/2Pf, X/h(x/h) |f|m,.,

and it completes the proof. L

From Lemma 2.2 and Lemma 2.6, we get the following result.

Theorem 2.7. Let sf, X be as in (1.9), and let f̂ satisfy the condition | · |2m f̂=
F> 0 with m > d/2 and F ¥ L.(Rd). Assume that there exists a constant
r > 0 such that h/q [ r. Let j be the Gaussian function (2.5), and assume
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that f̂ decays slower than ĵ around . such that ĵq/f̂h is uniformly bounded.
Then, for every f ¥Wm

2 (R
d) 5Wm

.(R
d), we have an error bound of the form

|f(x)−sf, X(x)| [ chm−d/2(1+Pf, X/h(x/h)),

where the constant c > 0 depends on |f|m, 2 and |f|m,..

Proof. Recalling (2.2), the proof of this theorem is achieved by direct
applications of Lemma 2.2 and Lemma 2.6. L

Now, we want to show that the function Pf, X/h( ·/h) is uniformly
bounded on W provided that the basis function f satisfies the condition in
(1.8). The proof technique of this paper is similar to that of Wu and
Schaback [WS] (actually, they estimated Pf, X), but our method is simpler
than [WS].

Lemma 2.8. Let the basis function f satisfy the assumption in (1.8). Then
there exists a constant c > 0 such that for any X … W, we have

Pf, X(x/h) [ c, x ¥ W.

Proof. Let us denote u(x) :=(u1(x), ..., uN(x))T as a vector in RN.
Then, the so-called power function in (2.3) can be rewritten as

P2f, X(x)=min
u ¥Km

F
R
d
f̂(h) | e ix ·h− C

N

j=1
uj(x) e ixj ·h :

2

dh

with the set

Km :=3u=(u1(x), ..., uN(x))T ¥ RN : C
N

j=1
uj(x) p(xj)=p(x) for all p ¥Pm 4,

(2.7)

see [WS] for the details. Then there is a vector ū=(ū1, ..., ūN) in the
admissible set Km which satisfies the following conditions:

(a) There exists c1 > 0 such that, for any x ¥ W, ūj(x)=0 whenever
|x−xj | > c1h, with h the density of X as in (1.6).

(b) The set {(ū1(x), ..., ūN(x)): x ¥ W} is bounded in a1(X).

For the examples of such vectors ū, the readers are referred to the paper
[L] and [Y2]. Remembering the condition on f̂ in (1.8), we have

P2f, X/h(x/h) [ ||F||L.(Rd) F
R
d
|h| −2m :1− C

N

j=1
ūj(x) e i(xj −x) ·h/h :

2

dh. (2.8)

10 JUNGHO YOON



Let pm−1(x) be the Taylor expansion of ex about the origin of degree m−1.
The polynomial reproducing property of ū ¥Km in (2.7) implies that

C
N

j=1
ūj(x)[1−pm−1(i(xj−s) ·h)]=0.

Thus, for |h| [ 1, by using the properties (a) and (b) of the vector ū, it
follows that

|h| −m |1− C
N

j=1
ūj(x) e i(xj −x) ·h/h :

[ h −m |h| −m C
N

j=1
|ūj(x)((xj−x) ·h)m|/m!

[ c C
N

j=1
|ūj(x)| [ cŒ. (2.9)

Also, for |h| > 1, it is immediate that

:1− C
N

j=1
ūj(x) e i(xj −x) ·h/h : [ 1+C

N

j=1
|ūj(x)| [ c. (2.10)

Both bounds in (2.9) and (2.10) can be inserted into the expression (2.8)
to get

P2f, X/h(x/h) [ c 11+F
|h| > 1

|h| −2m dh2 [ cŒ,

as a consequence of 2m > d. Therefore, we obtain the required result. L

Remark. In the above lemma, one may have the constant c independent
of W. However, practically, it depends on the shape of the boundary.
Regions with nice and smooth boundaries can allow better constants than
irregular boundaries.

We summarize the results of this section:

Theorem 2.9. Under the same conditions and notations in Theorem 2.7,
we have an error bound of the form

|f(x)−sf, X(x)| [ chm−d/2,

where the constant c > 0 depends on |f|m, 2 and |f|m,..

INTERPOLATION BY RADIAL BASIS FUNCTIONS 11



3. APPLICATIONS

We now turn to applications to specific radial basis functions. All the
examples here are based on the estimates in Lemma 2.8 and Theorem 2.9.

Example 3.1. Let the radial basis function f be chosen to be one of
the following functions:

(a) fl :=(−1) Km−d/2L (|x|2+l2)m−d/2, d odd, (multiquadrics),
(b) fl :=(−1)m−d/2+1 (|x|2+l2)m−d/2 log(|x|2+l2)1/2, d even, (‘‘shifted’’

surface splines), where 2m > d and l > 0, and where KsL indicates the
smallest integer greater than s. For the purpose of stressing the parameter
l, we use the notation fl, and especially we denote fl, h as the scaled
function, i.e.,

fl, h :=fl( ·/h).

Then we find that the Fourier transform of fl [GS] is of the form

f̂l=cm, dK̃m(l · ) | · | −2m,

where cm, d is a constant depending on m and d, and K̃n(|t|) :=|t|n Kn
(|t|) ] 0, t \ 0, with Kn(|t|) the modified Bessel function of order n [AS].
We note that

K̃n ’ (1+| · | (2n−1)/2) e −| · |,

and it implies that ĵq/f̂l, h is uniformlybounded.Of course, due toLemma2.8,

Pfl, X/h(x/h) [ c, x ¥ W.

Thus, based on Theorem 2.9, we have the following result.

Theorem 3.2. Let fl be one of the radial basis functions: multiquadrics
and ‘‘shifted’’ surface splines. Then, for every function f ¥Wm

2 (R
d) 5

Wm
.(R

d), we have an error bound of the form

||f−sf, X ||L.(W) [ ch
m−d/2,

where the constant c > 0 depends on |f|m, 2 and |f|m,..

Remark. As we already discussed, the interpolation scheme in this
study is employing the dilated basis function f( ·/h), which means our
analysis is stationary. It is necessary to point out that the approximation
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order of the stationary case depends on the order of singularity of f̂ at the
origin. Thus, in the case of inverse multiquadric f(x) :=(|x|2+l2)m−d/2

with 0 < m < d/2, no approximation order is predicted.

Recalling that the interpolant af, X in (1.1) uses the original (non-scaled)
basis function fl, we make one observation concerning the interpolants
af, X in relation to sf, X.

Theorem 3.3. Given a set X, assume that the interpolant af, X employs
the basis function fhl instead of fl. Then, the interpolant af, X is identically
equal to sf, X which uses fl, h.

Proof. It is sufficient to show that the interpolant sf, X using fl, h
can be represented as a function in the space span{fhl( · −x1), ...,
fhl( · −xN)}+Pm. Then, by the uniqueness of the solution of the linear
system (1.2) and (1.3), this theorem is verified as true. In particular, we
treat only the case d is even, because the other case is proved in the exactly
same way. For the purpose, we observe that

sf, X(x)= C
N

j=1
ajfl, h(x−xj)+p(x)

=h −2m+d 5 C
N

j=1
ajfhl(x−xj)− log h C

N

j=1
aj(|x−xj |2+(hl)2)m−d/26

+p(x).

Now, we are going to show that the term ;N
j=1 aj(|x−xj |

2+(hl)2)m−d/2 is a
polynomial of degree less than m. Note that m−d/2 is a positive integer
since d is even. Hence, by expanding the term (|x−xj |2+(hl)2)m−d/2, we
have the expression

C
N

j=1
aj(|x−xj |2+(hl)2)m−d/2= C

|r+s|1 [ 2m−d
ch, l, r, sx r C

N

j=1
ajx

s
j (3.1)

for some suitable constants ch, l, r, s with r, s ¥ Zd+. Due to the condition
;N
j=1 ajx

s
j=0 for |s|1 < m (see (1.2)), the right hand side of (3.1) is a

polynomial of degree m−d. L

Corollary 3.4. Let fl be one of the radial basis functions: multi-
quadrics and ‘‘shifted’’ surface splines. Let af, X be the interpolant to f as in
(1.1). Assume that the parameter l in fl is taken proportional to h. Then, for
every f ¥Wm

2 (R
d) 5Wm

.(R
d), we have an error bound of the form

||f−af, X ||L.(W) [ ch
m−d/2.

INTERPOLATION BY RADIAL BASIS FUNCTIONS 13



When l=0 in the above examples (a) and (b), they become the surface
splines f :=(−1) Km−d/2L | · |2m−d if d is odd, and f :=(−1)m−d/2+1

| · |2m−d log | · | if d is even, where 2m > d in both cases. In this case,
Ff=Wm

f (R
d), and hence, we can estimate directly as in Lemma 2.2

without splitting f into two functions fH and fT. Then we get the same
error bound as in [MN2, WS].

Corollary 3.5. Let f be the surface spline functions. Then, for every
f ¥Wm

2 (R
d), we have an error bound of the form

||f−sf, X ||L.(W) [ ch
m−d/2,

where c depends on |f|m, 2.
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